A Fast and Efficient Parameter Estimation Algorithm for Generalized Output Error Models

نویسندگان

  • Jie Jia
  • Hua Huang
  • Yong Yang
  • Ke Lv
  • Feng Ding
  • Shuying Huang
چکیده

One kind of the colored noise interference systems is generalized output error model (OEARMA). This paper presents a two-stage recursive least squares algorithm for OEARMA. Aiming at the OEARMA, this paper puts forward a two-stage recursive least squares algorithm. The basic idea of the algorithm is to combinie the auxiliary model identification idea and the decomposition technique to decompose a system into two subsystems. Each subsystem contains a parameter vector. With auxiliary model-based recursive extended least squares theory, an unknown intermediate variable output instead of the auxiliary model identification model vector, instead of unmeasurable noise terms in the information vector with the estimated residuals, which can use recursive identification idea to estimated all the parameters of the system, the algorithm has a high computational efficiency. The example of simulation states the effectiveness of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Estimation of parameters of metal-oxide surge arrester models using Big Bang-Big Crunch and Hybrid Big Bang-Big Crunch algorithms

Metal oxide surge arrester accurate modeling and its parameter identification are very important for insulation coordination studies, arrester allocation and system reliability. Since quality and reliability of lightning performance studies can be improved with the more efficient representation of the arresters´ dynamic behavior. In this paper, Big Bang – Big Crunch and Hybrid Big Bang – Big Cr...

متن کامل

Efficient Estimation of Errors-in-Variables Models

The paper addresses the discrete-time linear process identification problem assuming noisy input and output records available for the parameter estimation. The efficient algorithms are derived for the simultaneous estimation of the process and noise parameters. Implementation techniques based on matrix and polynomial decompositions are given in details resulting in estimation algorithms with re...

متن کامل

Estimating Algorithms for Prediction and Spread of a Factor as a Pandemic: A Case Study of Global COVID-19 Prevalence

Background: This paper presents open-source computer simulation programs developed for simulating, tracking, and estimating the COVID-19 outbreak. Methods: The programs consisted of two separate parts: one set of programs built in Simulink with a block diagram display, and another one coded in MATLAB as scripts. The mathematical model used in this package was the SIR, SEIR, and SEIRD models re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014